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A unified multigrid solution technique is presented for solving the Euler and Reynolds- 
averaged Navier-Stokes equations on unstructured meshes using mixed elements consisting 
of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms and 
tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea, 
the contribution of the paper lies in the formulation of a complete solution technique which 
can handle structured grids, block structured grids, and unstructured grids of tetrahedra or 
mixed elements without any modification. This is achieved by discretizing the full Navier- 
Stokes equations on tetrahedral elements, and the thin layer version of these equations on 
other types of elements, while using a single edge-based data-structure to construct the dis- 
cretization over all element types. An agglomeration multigrid algorithm, which naturally 
handles meshes of any types of elements, is employed to accelerate convergence. An auto- 
matic algorithm which reduces the complexity of a given triangular or tetrahedral mesh by 
merging candidate triangular or tetrahedral elements into quadrilateral or prismatic elements 
is also described. The gains in computational efficiency afforded by the use of non-simplicial 
meshes over fully tetrahedral meshes are demonstrated through several examples. 

This research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract No. NAS1-19480 while the authors were in residence at the Institute for Computer Applications in 
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001. 



1      Introduction 

Over the last decade, unstructured mesh techniques have gained popularity due to the flex- 
ibility they afford in dealing with complex geometries. However, a major drawback of such 
techniques remains their lower efficiency and resulting increased computational overheads as 
compared to structured mesh techniques. 

This lower computational efficiency is due to several factors. The most obvious of these is 
the requirement of explicitly storing the connectivity of the mesh and accessing memory loca- 
tions through indirect addressing. The difficulties associated with constructing sophisticated 
implicit or multigrid solution procedures for unstructured meshes have resulted in widespread 
use of simple algorithms such as explicit time-stepping, which generally results in inefficient 
solution procedures. Finally, the use of simplicial meshes (triangles in two dimensions and 
tetrahedra in three dimensions) often results in discretizations which are considerably more 
expensive to evaluate than what may be achieved using quadrilateral/hexahedral structured 
or block-structured meshes, both in terms of the required number of mesh points and the 
connectivity between the mesh points. 

While the indirect addressing overheads cannot be avoided in an unstructured mesh 
technique, the overheads associated with most other factors can be overcome, or at least 
minimized. Indeed, multigrid techniques for unstructured meshes have been demonstrated 
both in two dimensions and in three dimensions for the Euler and the Navier-Stokes equations 
by several authors [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Unstructured multigrid methods are capable of 
delivering convergence rates for steady-state problems which are competitive with the best 
structured-grid multigrid solvers available, on a per cycle basis. 

Thus, the most promising area for further increasing the overall efficiency of unstructured 
mesh techniques is to decrease the cost of the discretization itself. The additional cost 
incurred by the use of simplicial meshes can be demonstrated by considering a structured 
hexahedral mesh of N vertices. For a vertex-based finite-volume scheme, which results in 
a nearest neighbor stencil, there are N unknowns and 3N fluxes which must be evaluated. 
(For nearest neighbor stencils, the number of fluxes to be evaluated is given by the number 
of edges in the mesh, which asymptotically tends to 3N for a hexahedral mesh, neglecting 
boundary effects). If this hexahedral mesh is now subdivided into a tetrahedral mesh (by 
dividing each hexahedron into 6 tetrahedra), the equivalent finite-volume scheme consists 
of N unknowns, as previously, but the evaluation of 7N fluxes is now required to construct 
the discretization (since the number of edges in a tetrahedral mesh tends to the number 
of vertices plus the number of tetrahedra, neglecting boundary effects). Thus, for a given 
distribution of vertices, a tetrahedral mesh discretization is roughly twice as expensive to 
evaluate as a hexahedral mesh discretization. 

Another difficulty associated with simplicial meshes is their isotropic nature. The very 
fact that triangular and tetrahedral elements do not exhibit any preferred direction is what 
makes them ideal for discretizing arbitrarily complex configurations. In fact, most unstruc- 
tured mesh generation techniques rely on this property. However, when a configuration with 
a preferred direction is to be discretized, and different resolutions in the various directions 
are desired, unstructured mesh generation techniques are generally known to experience 
great difficulty in robustly delivering the different desired directional resolutions. Consider, 
for example, a high aspect-ratio wing geometry.   Wing geometries require high resolution 



near their leading and trailing edges. When using an isotropic unstructured mesh, the high 
leading and trailing edge resolution requirements also result in high spanwise resolutions 
in these areas, which greatly increase the number of grid points. This degree of spanwise 
resolution is unnecessary, since the spanwise gradients are known by design to be relatively 
small. Similar difficulties occur in the boundary layer regions near a wall for high-Reynolds 
number viscous flows, where the normal gradients are several orders of magnitude greater 
than the streamwise gradients. 

The generation of stretched unstructured meshes has been pursued to alleviate this prob- 
lem, both in two and three dimensions. However, in hindsight, it is apparent that all of these 
methods introduce some degree of structure into the stretched mesh regions, either simply 
as a result of the overall algorithm [11, 12], or by design [13, 14, 15, 16, 17]. For example, it 
is well known that for a stretched two-dimensional triangulation, obtuse triangles must be 
avoided due to the poor approximation accuracy which they afford [18]. Since the sum of 
the three angles in a triangle must be equal to 180 degrees, the only permissible stretched 
triangles are those with one small angle, and two angles which are close to 90 degrees. Hence, 
nearly right angle triangles are required in the highly stretched regions of the mesh. It is 
then a simple matter to see that any set of right angle triangles which tessellate a domain can 
be grouped into a set of quadrilaterals, simply by identifying and removing the appropriate 
diagonal edges. A local mesh structure can therefore always be identified in such regions. In 
fact, three dimensional stretched unstructured meshes are often derived from local structured 
or semi-structured meshes of hexahedral or prismatic elements, which are then subdivided 

into tetrahedral elements. 
In addition to the increased complexity of simplicial meshes, recent two-dimensional 

experiments have suggested that upwind finite-volume discretizations may suffer an accuracy 
degradation on stretched right-angle triangular meshes [19], due to the irregular shape of the 
resulting median-dual control volume. In fact, the use of a containment-circle based dual 
control volume, which de-emphasizes the contributions of the diagonal edges in such meshes 

has been proposed [20]. 
Rather than simply de-emphasizing such edges, we may choose to remove them altogether, 

thus forming quadrilaterals out of pairs of triangular elements in two-dimensions, or prisms, 
pyramids and hexahedra out of groups of tetrahedra in three dimensions. The goal is to 
reduce the cost of the discretization as much as possible by switching to such types of elements 
in regions of high grid stretching. The idea of using mixed elements in an unstructured 
mesh technique is by no means novel, and has been previously advocated by several authors 
[13, 14, 21, 22, 23, 24]. In fact, many have recognized the benefits of mixed elements, but have 
nevertheless advocated the use of simplicial meshes (using tetrahedral elements only), due 
to the homogeneity in data-structures and added simplicity such meshes provide. The main 
contribution of this paper is therefore to demonstrate how a solution procedure for mixed 
element meshes may be devised which retains the properties of homogeneity and simplicity 
coupled with rapid convergence and simple parallelization. 

In the following section, it will be shown how a single edge-based data-structure can be 
employed to construct the discretization of the Euler equations on meshes of mixed hexa- 
hedra, prisms, pyramids and tetrahedra. The use of an agglomeration multigrid approach 
for efficiently solving the discrete equations is then outlined in section 3, and several invis- 
cid flow calculations which illustrate the efficiency of this approach are given in section 4. 



The extension of this methodology to the Navier-Stokes equations is described in section 
5. An automatic algorithm for reducing the complexity of unstructured meshes by merging 
simplicial elements into other types of elements is then described in section 6. Finally, two 
and three dimensional examples of viscous flow computations on hybrid meshes are given in 
section 7. 

2 Inviscid Discretization 

The basic discretization for the inviscid flow terms are formed using a central difference 
finite-volume scheme with added artificial dissipation. For tetrahedral elements, this can 
also be formulated as a Galerkin finite-element scheme. Both finite-volume and finite-element 
schemes on tetrahedral meshes result in the same nearest neighbor stencil. Since all nearest 
neighbors are joined to the vertex under consideration by an edge, the stencil can be expressed 
using an edge-based data-structure. For hexahedral elements, the finite-volume and finite- 
element discretizations are no longer equivalent. The finite-element formulation results in a 
27 point stencil, involving all corner points of the 8 hexahedra which touch the considered 
vertex. This type of stencil cannot be represented by an edge based data-structure, since 
all points in the stencil are not linked to the considered vertex by an edge. The finite- 
volume discretization, where the control-volume is constructed by joining the centroids of 
all 8 hexahedra which touch the considered vertex, results in a 7 point stencil, where all 
the points of the stencil are located on edges emanating from the considered vertex, as 
shown in Figure 1. This type of discretization can be represented by the same edge-based 
data-structure employed for the tetrahedral element discretization. 

We therefore employ a finite-volume/element discretization on tetrahedral elements and 
a finite-volume discretization on hexahedral and other types of elements (prisms and pyra- 
mids). The discretization across the entire mesh is represented by a single edge-based data- 
structure. This type of construction has previously been proposed by several authors (see 
[21, 22] for example). 

3 Multigrid Technique 

Once the governing flow equations have been discretized in space, they form a set of coupled 
ordinary differential equations which must be integrated in time to obtain the steady-state 
solution. An explicit multi-stage Runge-Kutta time-stepping scheme is employed to advance 
these equations in time. For high resolution meshes, simple explicit schemes of this type 
yield very slow convergence, and result in inefficient solution schemes. 

An agglomeration multigrid technique is therefore employed to accelerate convergence to 
steady-state [7, 8, 9]. The idea behind agglomeration multigrid is to construct coarse grid 
levels automatically from the fine grid by fusing or agglomerating fine grid control volumes 
together. The agglomerated coarse grid control volumes become large polygons (polyhedra 
in 3D) and require a rediscretization of the governing equations. However, since the coarse 
grid control volumes may have arbitrary polygonal shapes, the type of elements constituting 
the fine grid is irrelevant.   Agglomeration multigrid can therefore be applied as easily to 



structured and block structured grids, as to tetrahedral unstructured and mixed element 

meshes. 
Agglomeration multigrid can also be interpreted as an algebraic multigrid technique for 

sparse matrices. In fact, the algorithm only requires as input a sparse matrix, which is usually 
given in the form of a weighted graph, i.e. vertices and edge-based coefficients, where the 
edge coefficients represent the non-zeros of a sparse matrix. The agglomeration procedure 
can then be viewed as a technique for eliminating certain vertices, and obtain a new smaller 
or coarser problem on the remaining subset of vertices. The equations to be solved on this 
new coarser level can be entirely derived by a projection of the fine grid matrix operator, 
(i.e. by summation of the constituent fine grid equations within an agglomerated cell), and 
thus rediscretization of the governing equations on the coarse levels is not required. The 
structure or character of the fine grid which generates the equations to be solved is therefore 
irrelevant in the agglomeration multigrid approach. This may not necessarily be true for 
more traditional multigrid strategies, where coarse mesh levels are explicitly constructed. 
For example, for mixed-element meshes it remains unclear whether regions of the domain 
must contain similar type elements on the coarse levels as on the fine mesh, when employing 
an overset-mesh multigrid strategy. 

The agglomeration procedure is accomplished by using a greedy-type frontal algorithm. 
A priority queue is maintained, which constitutes the front, and new vertices incident to the 
front are picked to initiate a local agglomeration of their neighbors. Each set of agglomerated 
control volumes is placed behind the front, and the process is repeated until the entire domain 

is covered. 
In order to maintain favorable overall complexity of the multigrid cycle, each coarser 

level should contain approximately 8 times fewer (4 times fewer in 2D) vertices and edges 
than the previous level. The specific algorithm described in [7] roughly achieves such results 
on tetrahedral meshes by deriving maximal independent sets, but fails to produce adequate 
reductions in coarse level complexity for non-simplicial meshes. This is a result of the sparser 
graphs associated with such meshes; a hexahedral mesh, for example, contains less than half 
the number of edges associated with the tetrahedralization of the same point set. Therefore, 
the algorithm is modified as described below. 

At every step of the agglomeration procedure, having picked a seed vertex (vertex that 
will be retained), the modified algorithm for agglomeration in 2D/3D consists of the following 

steps: 

1. Form a list of neighbors not already agglomerated. 

2. Agglomerate up to a maximum of 2 (3 in 3D) available neighbors from the list. 

3. Augment the list by adding the neighboring vertices of the agglomerated vertex. 

4. Determine a vertex from the list that is incident to at least two vertices already agglom- 
erated into the present coarse grid control volume. Agglomerate the control volume 
associated with this vertex. 

5. If the number of agglomerated vertices is fewer than 3 (7 in 3D) go to Step 3. 



The central idea is to generate groups of agglomerated vertices which are as highly inter- 
connected as possible. The resulting algorithm is applicable to simplicial and nonsimplicial 
grids and yields favorable coarse grid complexities. 

4    Inviscid Results 

In order to illustrate the flexibility and efficiency of the current discretization and multigrid 
approach, and to demonstrate the reduction in complexity afforded by non-simplicial meshes, 
three dimensional inviscid flow over a NACA 0012 wing has been computed using a fully 
tetrahedral mesh", a fully prismatic mesh, and a fully hexahedral mesh. All three meshes 
are constructed by stacking a two-dimensional triangular or quadrilateral O-mesh in the 
spanwise direction. A straightforward stacking of quadrilaterals yields a hexahedral mesh, 
while stacking of triangles yields a prismatic mesh. The tetrahedral mesh is then obtained 
by subdividing each prism into three tetrahedra. The three meshes are based on the same 
set of vertices, but differ in the connectivity of the vertices. The three meshes are depicted 
in Figure 2. They each contain 40,000 points. While the tetrahedral mesh contains 267,328 
edges, the prismatic mesh contains 155,200 edges, and the hexahedral mesh contains only 
116,800 edges. 

The computed solution on each of the three meshes is depicted in Figure 3, as a set of 
Mach contours on the surface. The freestream Mach number is 0.8 and the incidence is 
1.25 degrees for this case. The familiar strong upper shock and weak lower shock pattern is 
obtained. Figure 4 illustrates the multigrid convergence rate achieved for this case on each 
of the three meshes. The convergence rate in terms of multigrid cycles is almost identical 
for each of the three meshes, indicating the agglomeration algorithm performs equally well 
on meshes with elements other than tetrahedra. When these convergence rates are plotted 
in terms of cpu seconds in Figure 5, the hexahedral mesh result is seen to incur less than 
half the cost of the tetrahedral mesh result. Furthermore, the prismatic mesh result is only 
slightly more expensive than the hexahedral mesh result. These gains in efficiency for the 
non-simplicial meshes are a direct result of the lower number of edges on these meshes (and 
their coarse mesh multigrid counterparts) when compared to the tetrahedral mesh. A total 
of 4.4 Mwords of memory was required for the tetrahedral mesh case, while the prismatic and 
hexahedral mesh cases required 3.6 Mwords and 3.2 Mwords respectively. Since there are a 
substantial number of vertex-based arrays, these memory decreases are less than proportional 
to the decrease in the number of edges. (However, in viscous flow cases, the relative memory 
gains are higher since more edge-based arrays are required). 

An additional advantage of the current approach is the ability to handle traditional block- 
structured meshes. For any C0 continuous block structured mesh, given a list of points in each 
block, and the inter-block connectivity, it is a simple matter to convert this information into 
a list of unstructured hexahedra. The flow equations can then be discretized and solved on 
the hexahedra as described previously. Since all mesh levels are treated as unstructured data- 
sets, the agglomeration procedure is unconstrained by the macro-structure of the original 
block-structured mesh, and the familiar problem of requiring grid point distributions which 
are powers of 2 in each block in each direction is avoided. This is especially appealing for 
block-structured grids which contain a large number of blocks, such as those generated by 
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current automatic blocking techniques. As an example, the inviscid flow over an ONERA M6 
wing has been computed on a block-structured grid. The grid was provided by P. Eiseman 
of the Program Development Corporation [25], and contains a total of 129,187 points and 

141 blocks. 
The mesh is illustrated in Figure 6. The freestream Mach number and the flow incidence 

for this case are 0.84 and 3.06 degrees respectively. The computed solution, in terms of Mach 
contours on the surface, is shown in Figure 7. The convergence rate of the agglomeration 
multigrid procedure for this case is depicted in Figure 8. In 100 cycles, the residuals are 
reduced by 5.5 orders of magnitude. This type of convergence is consistent with that obtained 
in the previous examples, as well as with that obtained by the same algorithm on fully 
tetrahedral meshes [7], and by structured grid multigrid solvers [26]. This calculation requires 
a total of 5 minutes of CPU time and 10 Mwords of memory on the CRAY C90 machine. 

5    Extension to the Navier Stokes Equations 

5.1    Discretization of Viscous Terms 

On tetrahedral meshes, the viscous terms for the full Navier-Stokes equations are discretized 
using a finite-element Galerkin approximation. This discretization results in a nearest neigh- 
bor stencil, and can be represented using an edge-based data-structure [2, 27]. Furthermore, 
the resulting edge coefficients are symmetric and thus only 6 additional coefficients per edge 

are required for the viscous terms. 
For hexahedral meshes, the discretization of the full Navier-Stokes terms invariably leads 

to a 27 point stencil involving points which are not directly connected by a mesh edge to 
the vertex under consideration. Our approach in this case is to resort to the thin-layer form 
of the Navier-Stokes equations. By neglecting the cross-diffusion terms in the full Navier- 
Stokes equations, and resorting to a thin-layer description in each coordinate direction of the 
hexahedra, a nearest neighbor stencil is recovered, and the edge-based data-structure may be 
used to represent this discretization. A similar strategy can be employed for prismatic and 
pyramidal elements. This strategy amounts to replacing the diffusion terms by a Laplacian 
operator. This can be achieved using one additional coefficient per edge and does not require 
any information about the direction and forming element type of each edge. It is important, 
however, to realize that this technique amounts to more than just neglecting the cross- 
diffusion terms, and is only strictly valid in the presence of the thin-layer assumption. For 
example, the full diffusion terms in two-dimensions for the x-momentum equation read: 

4 

3 
+ uyy + nuxy (1) xx T u-yy ^ 0 ™xy 

while present approach yields 

Only under the condition 

«2 

+ Uyy (2) 

<   Uyy UXy   <C   Uyy (S) 



which amounts to the thin-layer assumption, is the present approach justified. 
The use of the full viscous terms in certain regions of the domain and the thin-layer 

terms in other regions of the domain results in the solution of different governing equations in 
various regions of the domain, depending on the types of elements employed in the mesh. The 
justification for such an approach is based on employing elements other than tetrahedra only 
in regions of high mesh stretching, or in regions where viscous effects are negligible. When 
high mesh stretching is present in one or more directions, the flow gradients in the direction 
of low resolution (e.g. the streamwise direction of a boundary layer) are usually known to 
be small and thus a thin-layer approximation is justified. In the event these gradients are 
larger than anticipated, they cannot be accurately resolved due to the low mesh resolution 
in this direction, thus the omission of the cross-diffusion terms is still justified. 

Another possibility is to form the full viscous terms by first computing the flow gradi- 
ents at the vertices of the mesh by integrating around the boundary of the inviscid control 
volume associated with each vertex, and then repeating this operation, integrating the gra- 
dients themselves about each control volume, in order to construct a second difference. The. 
difficulty with such an approach is that it corresponds to the use of a stencil 2h for the vis- 
cous terms, where h is a measure of the cell size, which results in lower accuracy. In regions 
where the thin-layer assumption is valid, the present approach can be expected to be more 
accurate. 

One can devise schemes which combine both approaches, where the main thin-layer 
terms are computed using the present approach, and additional cross-terms and streamwise 
corrections are added using the repeated gradient integration approach. However, in regions 
where the thin-layer assumption is not valid, it may be simpler to subdivide the mesh 
elements into tetrahedra. 

5.2    Turbulence Model 

The single field-equation turbulence model of Spalart-Allmaras [28] is employed for model- 
ing turbulence effects. This model consists of a single transport equation with convective, 
diffusive and source terms. The convective terms are discretized using a first-order upwind 
method, which results in a nearest neighbor stencil on meshes of mixed elements and may 
be represented by the edge-based data-structure. The particular formulation of the diffusion 
terms in the model contains no cross-terms, and is thus easily represented as a nearest neigh- 
bor stencil by the edge-based data-structure for mixed element meshes. The source terms 
require only point-wise information and are also easily constructed on meshes of arbitrary 
elements. The turbulence model is solved decoupled from the flow equations using a Jacobi 
iteration. Convergence to steady-state of the turbulence equation is accelerated using the 
multigrid algorithm in an analogous manner to the flow equations. 

6      Mesh Merging Algorithm 

While the present solution strategy enables the use of various types of meshes, such as block 
structured, hybrid and fully unstructured meshes, the main motivation for this approach is 
to reduce the complexity associated with unstructured grid solutions.   Since the majority 



of unstructured meshes are fully tetrahedral, and many tasks such as mesh adaptation and 
solution visualization are most easily performed on fully tetrahedral meshes, a preprocessing 
algorithm which merges simplicial elements into more complex element types prior to the flow 
solution phase enables a reduction in the associated solution overheads, without complicating 
the implementation of other such tasks. In two dimensions, pairs of neighboring triangles 
may be merged into quadrilaterals by removing their common diagonal edge. Since a perfect 
quadrilateral (i.e. a rectangle) contains four co-circular points, neighboring pairs of triangles 
which are formed by four nearly co-circular points may be flagged as candidates for merging. 
The resulting diagonal edges to be removed can be identified by constructing the Voronoi 
dual of the mesh. This dual mesh is obtained by drawing straight-line segments between the 
circumcenters of neighboring triangles, as shown in Figure 9. 

Each mesh edge is associated with a perpendicular dual edge. When two triangles are 
co-circular, the dual edge of their common diagonal becomes vanishingly small. Candidate 
edges for removal may therefore be identified by comparing the length of their Voronoi dual 
edge with the perimeter of the Voronoi control volume about each of the edge end-points. 
Such edges are then removed if they represent the smallest dual edge of one of their forming 
triangles, and if neither triangle has already been merged into a quadrilateral. 

This procedure is closely related to the edge removal technique described in [29], as well as 
to the containment dual control-volume approach advocated in [20] in order to de-emphasize 
the contributions of diagonal edges in a finite-volume scheme. (In fact, the containment dual 
may be substituted for the Voronoi dual in the present algorithm.) 

As an example, the above algorithm is applied to a triangular unstructured mesh gener- 
ated by the advancing layers method [16]. The original mesh, a partially merged version, and 
a fully merged version of this mesh are depicted in Figure 10. The partially merged mesh 
is obtained by employing a stringent criterion on the relative size of the dual edge, which 
results in merging only in regions of high grid-stretching where the elements are almost right 
angle triangles. On the other hand, for the fully merged mesh, a more liberal criterion results 
in a 30 % reduction in the number of edges, which is very close to the maximum possible for 
the two dimensional case. 

In three dimensions, tetrahedra may be combined into prisms, pyramids or hexahedra. 
For a mesh of N vertices, a tetrahedral mesh contains approximately 7N edges, a hexahedral 
mesh 3N edges, and a prismatic mesh 4N edges. Thus, the majority of the reduction in com- 
plexity is obtained in going from tetrahedra to prisms. For simplicity, the three dimensional 
algorithm only seeks to construct prismatic elements in regions of high grid stretching. This 
is achieved by searching through neighboring element lists, and identifying groups of three 
nearly co-circular high aspect ratio tetrahedra which form a well shaped prism. After the 
prismatic elements have been formed, a subset of these may be re-subdivided in order to 
ensure compatible quadrilateral and triangular face patterns between neighboring tetrahedra 

and prisms. 

7      Viscous Flow Results 

As a two-dimensional example, the viscous turbulent flow over a three-element airfoil has 
been computed on the three meshes of Figure 10. All three solutions are in good agreement 



with each other, as well as with the corresponding experimental data taken from [30], as 
illustrated by the surface pressure plots in Figure 11. The convergence rates for these three 
cases are compared in Figure 12. The agglomeration multigrid performs equally well for 
the triangular mesh as for the mixed quadrilateral/triangular meshes, achieving a residual 
reduction of 5 orders of magnitude over 400 cycles. While this is somewhat slower than the 
convergence rates previously displayed for the inviscid cases, it is nevertheless representative 
of the performance of multigrid methods for high-Reynolds number viscous flows, where 
considerable grid stretching is present. The reduction of complexity in two dimensions is, 
however, not as impressive as in three dimensions, since a maximum of 33 % of the edges 
may be removed in merging triangles to quadrilaterals. 

As a three dimensional example, a hybrid mesh has been constructed over a partial-span 
flap geometry. In a first step, a fully tetrahedral unstructured mesh was constructed over 
the center portion of the wing, which contains the principal geometric complexities such as 
the junction between the flapped and unflapped span of the wing. This portion of the mesh 
contains 553,401 points, and 3.1 million tetrahedra, and was generated by S. Pirzadeh using 
the advancing layers technique [16]. The normal spacing at the airfoil surfaces is 10-5 chords. 

The three-dimensional mesh merging algorithm was then employed to transform the 
unstructured center span mesh into a mixed tetrahedral and prismatic mesh. Almost half 
of the tetrahedra were merged into prisms, resulting in a total of 489,000 prisms, and 1.7 
million remaining tetrahedra in the center span mesh. The merging operation was confined 
to the high-aspect ratio tetrahedra in the near wall region, as illustrated in Figure 13. Each 
end of this mesh was then extruded in the spanwise direction, thus resulting in a mixture of 
prisms and hexahedra in these regions. 

The final mesh contains a total of 927,000 vertices, with 1.7 million tetrahedra, 1 million 
prisms, and 112,500 hexahedra. A coarser but topologically similar mesh of 160,000 points 
is depicted in Figure 13, illustrating the structure of the mesh away from the center span, 
and near the airfoil surfaces. (The fine mesh cannot be displayed effectively due to printing 
resolution limitations). The fine mesh contains a total of 4.4 million edges, whereas a tetra- 
hedralization of the same point set would contain approximately 6.5 million edges. Figure 14 
illustrates one of the coarse level agglomeration graphs produced by the multigrid algorithm. 
The solution on the fine mesh is depicted in Figure 15, in terms of Mach contours on the 
wind-tunnel wall, and density contours on the wing surface. For this case, the freestream 
Mach number is 0.2, the incidence is 10 degrees, and the Reynolds number is 3.7 million. The 
convergence of the agglomeration multigrid algorithm is plotted in Figure 16, where a resid- 
ual reduction of 3.5 orders of magnitude over 300 cycles is observed. This convergence rate is 
similar to that achieved for viscous flows in two dimensions, as well as in three dimensions on 
a fully tetrahedral mesh for this same geometry [9]. This computation required a total 135 
MWords of memory and 8 CPU hours, which could be executed in about 50 wall clock min- 
utes using all 16 processors of the CRAY C-90, but in a time sharing mode where 54% of the 
machine was allocated to this specific job. This represents roughly a 30 % reduction in CPU 
time and 20 % reduction in memory over what would be required on a fully tetrahedral mesh 
of the same point set. Furthermore, the extrusion process enables a low spanwise resolution 
at the end-walls of the wing, while maintaining the high chordwise resolution present in the 
center span, and therefore reduces the required number of grid points for a given solution 
accuracy. In Figure 17, the surface pressure distributions at several spanwise locations are 
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compared with experimental data taken from [31], and with a calculation performed on a 
fully tetrahedral mesh of 2.34 million points [9]. The two computational results are in close 
agreement with the experimental data. Although the precise relative accuracy of these two 
computations remains to be determined, it is noteworthy that the mixed element solution 
was obtained at almost 1/3 the cost of the tetrahedral mesh solution of [9]. 

8 Conclusion 

The use of nearest-neighbor stencils, an edge-based data-structure, and an agglomeration 
multigrid technique, results in an efficient solver which can operate on meshes of arbitrary 
polyhedral cells. In the present work, we have restricted ourselves to meshes of tetrahedra, 
prisms, pyramids, and hexahedra for simplicity. This approach enables the use of tetrahedral 
unstructured meshes, hybrid meshes, and even block-structured meshes. When employed in 
conjunction with a mesh-element merging algorithm, substantial savings in computational 
memory and time can be achieved for a given unstructured tetrahedral mesh calculation. 

A drawback of this approach is the need to resort to the thin-layer assumption in regions 
where non-simplicial elements are employed, or to incur an accuracy degradation in the 
viscous terms by resorting to a larger (2h) stencil. 

An avenue for future work is to combine mesh adaptation and mesh merging operations 
to obtain a more optimal distribution of mesh points, and to ensure a reduction in the mesh 
complexity only in regions where the thin-layer assumption is justified. 
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Figure 1: Illustration of 7 point finite-volume and 27 point finite-element stencil and associ- 
ated control-volumes for hexahedral mesh 
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Figure 2: Hexahedral, Prismatic, and Tetra- 
hedral Meshes about NACA 0012 Wing 

Figure 3: Computed Mach Contours for Flow 
over NACA0012 Wing on Hexahedral, Pris- 
matic, and Tetrahedral Meshes 
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Figure 5: Convergence Rate of Various Meshes in Terms of CPU Time 

15 



Figure 6: Block Structured Mesh about ONERA M6 Wing 

Figure 7: Computed Mach Contours on ONERA M6 Wing (Mach = 0.84, Incidence = 3.06 
degrees) 
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Figure 8: Convergence Rate of Agglomeration Multigrid on Multiblock Mesh for ONERA 
M6 Wing 
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Figure 9: Voronoi dual associated with triangular mesh 
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Figure 10: Fully triangular, partially, and fully merged meshes using two-dimensional mesh 
merging algorithm for three-element airfoil geometry 
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Figure 11: Comparison of Computed and Experimental Surface Pressures for Three-Element 
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Figure 13:   Mixed element mesh showing detail in near wall region for partial-span flap 
geometry 
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Figure 14: Second level agglomeration graph for above mesh 

Figure 15: Computed solution displayed as Mach contours on wind-tunnel wall and pressure 
contours on airfoil surfaces for partial-span flap geometry 
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Figure 16:  Convergence Rate of for Viscous Flow over Partial Span Flap on Fine Mixed 
Element Mesh 
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